Statistical, connectionist, and fuzzy inference techniques for image classification
نویسندگان
چکیده
A spectral classification comparison was performed using four different classifiers; the parametric maximum likelihood classifier and three non-parametric classifiers; neural networks, fuzzy rules, and fuzzy neural networks. The input image data is a SPOT satellite image of the Otago Harbour near Dunedin, New Zealand. The SPOT image data contains three spectral bands in the green, red and visible infrared portions of the electromagnetic spectrum. The specific area contains intertidal vegetation species above and below the waterline. Of specific interest is eelgrass (Zostera novazelandica), which is a biotic indicator of environmental health. The mixed covertypes observed in an in-situ field survey are difficult to classify because of subjectivity and water’s preferential absorption of the visible infrared spectrum. In this analysis, each of the classifiers were applied to the data in two different testing procedures. In the first test procedure, the reference data was divided into training and test by area. Although this is an efficient data handling technique, the classifier is not presented with all of the subtle microclimate variations. In the second test procedure, the same reference areas were amalgamated and randomly sorted into training and test data. The amalgamation and sorting were performed external to the analysis software. For the first testing procedure, the highest testing accuracy was obtained through the use of fuzzy inferences at 89%. In the second testing procedure, the maximum likelihood classifier and the fuzzy neural networks provided the best results. Although the testing accuracy for the maximum likelihood classifier and the fuzzy neural networks were similar, the latter algorithm has additional features, such as: rules extraction, explanation, and fine tuning of individual classes.
منابع مشابه
Detection of Breast Cancer Progress Using Adaptive Nero Fuzzy Inference System and Data Mining Techniques
Prediction, diagnosis, recovery and recurrence of the breast cancer among the patients are always one of the most important challenges for explorers and scientists. Nowadays by using of the bioinformatics sciences, these challenges can be eliminated by using of the previous information of patients records. In this paper has been used adaptive nero fuzzy inference system and data mining techniqu...
متن کاملAdaptive Neuro-Fuzzy Inference System application for hydrothermal alteration mapping using ASTER data
The main problem associated with the traditional approach to image classification for the mapping of hydrothermal alteration is that materials not associated with hydrothermal alteration may be erroneously classified as hydrothermally altered due to the similar spectral properties of altered and unaltered minerals. The major objective of this paper is to investigate the potential of a neuro-fuz...
متن کاملNeural and traditional techniques in diagnostic ECG classification
Neural and traditional techniques have been compared for the particular task of automatic ECG analysis. A large validated ECG database has been used. Statistical methods, neural architectures with supervised and unsupervised learning, and a neuro-fuzzy architecture have been considered. The results from the connectionist approach are always at least comparable with those coming from more tradit...
متن کاملThyroid disorder diagnosis based on Mamdani fuzzy inference system classifier
Introduction: Classification and prediction are two most important applications of statistical methods in the field of medicine. According to this note that the classical classification are provided due to the clinical symptom and do not involve the use of specialized information and knowledge. Therefore, using a classifier that can combine all this information, is necessary. The aim of this s...
متن کاملSUBCLASS FUZZY-SVM CLASSIFIER AS AN EFFICIENT METHOD TO ENHANCE THE MASS DETECTION IN MAMMOGRAMS
This paper is concerned with the development of a novel classifier for automatic mass detection of mammograms, based on contourlet feature extraction in conjunction with statistical and fuzzy classifiers. In this method, mammograms are segmented into regions of interest (ROI) in order to extract features including geometrical and contourlet coefficients. The extracted features benefit from...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- J. Electronic Imaging
دوره 6 شماره
صفحات -
تاریخ انتشار 1997